
Visual to Auditory Sensory Conversion

Visual to Auditory Sensory Conversion
Finn Boirea)

(Dated: August 21st, 2017)

The common challenge faced by those who are visually impaired is that they are unable to utilize to its fullest
potential one of the most versatile and dynamic senses that is available to human beings: sight. Tactile and
auditory inputs allow them to still maintain an awareness of the world, but it lacks accuracy and completeness
that would be granted to them through a visual input. To resolve this issue, I created an apparatus that
converts camera inputs to sound. The mappings all vary; from color values and depth coming from the
cameras, to pitch, volume, and panning coming out of headphones. In this paper, I will discuss the merits
and faults of the various mappings I attempted.

I. INITIAL ISSUES

A. Dimensional Problems

There are inherently several difficulties that I faced
when trying to convert a 2-tensor of four dimensional
vectors to that of a 1-tensor of three dimensional vec-
tors, where the four dimensional vectors contain three
color values and depth, while the three dimensional vec-
tors contain frequency, panning, and direct volume. The
majority of this paper will be devoted to this problem,
examining various solutions and mappings to create an
intuitive and easy to use interface.

B. Depth Detection

One aspect of human vision that is difficult to incor-
porate into an auditory device is depth. An ear cannot
distinguish between two identical sounds coming from
different distances away (provided volume is the same
upon reaching the ear), and when all sound produced is
through a pair of headphones, it is difficult to produce
sound that seems ”far away.”

II. DEVELOPMENT OF THE APPLICATION

The application arose through an idea to create inter-
active audio landscapes through camera inputs. How-
ever, as I saw the potential for what camera to audio
processing could do, it morphed into a wearable sensory
supplement.

It’s structured in two threads, running simultaneously.
To reduce processing delays, there is the image process-
ing thread and an audio generation thread, which send
data between each other via protobuf messages. Within
the vision thread, OpenCV 2.01 is used to manipulate
the input from the webcams, then sends the resulting
data through protobuf to the audio thread, which uses

a)http://steampunc.com

PortAudio2 to generate sine waves of a particular fre-
quency. Development occurred during the months be-
tween June and August, as did the testing of the various
methods.

The largest hurdle faced was the experimentation with
depth sensing capabilities. Not only was the substan-
tial price of cameras a problem, but also the APIs. The
prices associated with many of the depth sensing cameras
on the market (be they time-of-flight, infrared, or stereo)
were outside of my budget, and the APIs for many of the
lower-end cameras that I could afford were badly docu-
mented and unreliable. As a result, I had to develop code
to do some stereo vision processing. OpenCV already has
several built-in functions to do something along the sort,
but to make OpenCV’s functions work, I needed to con-
nect them to the previously existing code. I calibrated
the cameras using a checkerboard pattern, but had diffi-
culties in creating a precise depth measurement.

I used the depth data to change the volume of the audio
sources depending on how far away they are, making it
easier to tell of the proximity to an object. It’s still not
working 100%, but in tests where it has worked, the depth
measuring contributed greatly to improving the ability to
understand the audio, and tell what was either close or
far away. A potential way to improve depth data and
portability of the application would be to deploy to a
depth-sensing smartphone, like a Google Pixel or iPhone
7, which doesn’t use a jerry-rigged depth sensing setup
like the current application.

The second largest issue encountered in programming
the application was in accessing the camera streams. Due
to insecure connections, I had a hardware issue when
using one of the cameras, which caused the application
to segmentation fault when trying to access pixels that
held null values.

Third, incorporating OpenCV and PortAudio into the
Bazel project took trial and error, serving as a good learn-
ing experience for incorporating third-party programs
into a C++ application built with Bazel. Ultimately,
after unsuccessfully adding a third party folder which in-
cluded the source for both libraries and custom rules for
including the libraries, I tried a global installation of both
OpenCV and PortAudio on the system. This allowed us
to include symbolically linked files to the compiled li-
braries, instead of compiling themselves as a part of the



Visual to Auditory Sensory Conversion 2

projects.
These were the main difficulties faced in the develop-

ment of the application. The rest of the paper will be
dedicated to addressing the potential input modes and
their merits.

III. VISUAL TO AUDITORY MAPPINGS

A. Colorspaces

1. RGB

The most commonly known and well-understood form
of storing colors within a computer’s memory is through
the RGB colorspace, where three values, corresponding
to a level of red, green, and blue respectively, vary to
describe the range of possible colors. This colorspace is
helpful from a computer programming standpoint, be-
cause computer displays use red, green, and blue pixels
to display content, but it’s not as useful for image pro-
cessing, because it is difficult to find correlation between
colors. For that reason, the RGB colorspace was avoided
in this application.

2. HSV

A HSV colorspace holds three values, much like the
RGB colorspace. However, these values, instead of hold-
ing direct correlation to the amount of a given color, are
instead controlling the hue, saturation (or brightness),
and value of a colored pixel.

FIG. 1. The HSV Colorspace

Fig. 1 shows the variations in each value and how it
affects the color displayed. As saturation nears zero, it
becomes more white, and as value increases it gets less
dark and move vibrant.

This colorspace is useful because it gives a single value
that controls the range of colors. This means that in pro-
gramming a direct correlation between pitch and color,
the hue value is linearly linked to pitch, only scaling by
a constant. In tests, this pitch linking has shown to be a
fairly successful way to determine the color of an object

without a visual feedback. Taking advantage of neuro-
plasticity, over time the brain develops an understanding
of what each pitch means, even for those who lack per-
fect or relative pitch abilities, as I saw in other studies3.
Although not yet reaching such results with the current
application, there is potential to get to this further and
more advanced stage.

The second potential benefit of the HSV colorspace
is the value level. By mapping the value to volume, the
more vibrant the color, the louder the sound of this color.
This allows the user to determine subtleties in the color
and brightness of their surroundings that would have
gone unnoticed without some sort of feedback. How-
ever, although providing nuance to the auditory input,
this value-based modulation came with pitfalls in test-
ing. With too many variables controlling volume, it was
difficult to interpret what a variation in volume meant.
Any object could have gotten further away (as depth also
controls volume), darker (due to the value changing), and
with the addition of other variables, there could be even
more affecting it. For that reason, in the final version,
there was no value controlling volume or pitch.

3. Greyscale

Grayscale was the other colorspace that saw experi-
mentation. This colorspace only holds one value per
pixel: its brightness. With this more simple input, I
mapped the brightness to pitch. In tests, the simplicity
of this colorspace made it the easiest to begin interpret-
ing. After wearing the apparatus for a prolonged period
of time, testers were able to distinguish between differ-
ent parts of a room and outdoor areas. However, this
mapping seemed to make it more difficult to determine
specifics about surroundings, although it simplified gen-
eralized recognition.

B. Audio Panning

One aspect of auditory sense not yet discussed in this
paper is the ability to determine lateral differences be-
tween sounds. We can tell the difference between a sound
coming from the left and the right, so for all mappings,
the further to the left that the pixel is situated in the
camera input matrix, the more volume coming from the
left side of the headphone set. Within the code, the
pixel’s coordinates in the input matrix takes the form (y,
x), where x increases the further to the right the pixel is
positioned. Thus, the corresponding volumes are:

VLeft =
imagewidth − x

imagewidth

VRight =
x

imagewidth



Visual to Auditory Sensory Conversion 3

With these calculations, I was able to make the pixel’s
position affect the volume in both ears, giving the sensa-
tion of a directional sound.

This directional sound is imperfect. For our brains to
understand a true directional sound in an environment,
our ears must perform some subconscious calculations,
accommodating for the speed of sound and the minute
delay between reaching one eardrum and the other, and
the slight muffling that occurs depending on the direc-
tion of the sound. The sine waves coming from the head-
phones don’t simulate this, and it is another part of the
application that needs further development.

C. Grouping

The final part of the program addressed in this paper
is the grouping of pixels to produce sound. If the applica-
tion was generating an individual sine wave for each and
every pixel of the camera input matrix, it would not only
take significantly more processing time, but would also
create such a cacophony of noise that, without extensive
acclimation to the system, prospective users would face
difficulty interpreting inputs. So, to simplify the inter-
face, the program divides the camera input matrix into
a customizeable number of groups. First, the program

blurs the image, then samples a single pixel from each
group and sends the data for that pixel through a proto-
buf message to the audio generation thread.

IV. CONCLUSION

The (only partially up-to-date) code for the project is
on Github4, but you can see many of the things written of
in this paper there. In the final iteration, although details
were still not easily interpretable, the program allowed
users to navigate through hallways, along sidewalks, and
go about their lives. The current barriers to progress are
portability, consistent depth measurement, and price (I
don’t have infinite money to spend on this project), but
with more time and effort directed towards these barriers,
they will be solved. In moving forwards, I am considering
the usage of a phone for processing and an industrial-
grade depth camera, optimizing code for a slightly less
powerful computer, and ultimately establishing a product
for production within the next year.

1Http://opencv.org/.
2Http://portaudio.com/.
3I have misplaced the link to these studies. I assure you they existed
on the internet in June of 2017.

4Https://github.com/steampunc/blind-helper.


