
Motion Profiling for FRC Robots

Finn O’Toole Boire
Programmer

FRC 1678, Davis, CA

April 6, 2017

1 Model

For this paper, when we are using example and showing models of a system, it’s
going to be that of a drivetrain. This is an overview of the tank drive drivetrain
model.

Consider both sides of the drivetrain as single wheels, which both have their
own velocities. Then, the forwards velocity of the drivetrain is equal to the
average of the two velocities.

vforwards =
vleft + vright

2

However, the drivetrain also has the potential to rotate, by driving the two
sides at different velocities. Since when you drive one side backwards and the
other side forwards, it goes at its maximum angular velocity, the velocities must
be subtracted, not added. Finally, since this calculated velocity is still linear
velocity, it can be divided by the robot radius to acquire the robot’s angular
velocity.

ω =
vleft − vright

rrobot

2 Motion Profiling

Motion profiling is the practice of setting non-static goals for a system to reduce
sudden accelerations and impossible movements. It’s important to reduce the
wear and tear on mechanisms on robots and controlled systems, and allows more
effective use of certain aspects of controllers, like integral terms.

2.1 Systems without Motion Profiling

When you have a system which doesn’t profile its goals, it ends up getting given
unrealistic goals and causes motors and inputs to suffer. One example, from
Citrus Circuits’ 2016 robot Adrian, was the large pivot arm. With so much

1



mass, the arm put serious strain on the physical components of the robot, like
the central shaft on the pivot, and on the motors, which contributed to them
breaking multiple times. You can see this in Fig. 1 an image of the time the
central shaft of the pivot sheared completely through, due to slight imperfections
in manufacturing along with repeated heavy stress on the part.

Figure 1: A sheared hex shaft from Citrus Circuit’s 2016 pivot

Programmatically, systems without motion profiling are simple. You set a
goal, the controller responds by trying to make the system converge towards
the goal, giving it a voltage or input which was tuned by a person to make it
converge most effectively. Below, in Figure 2, is a graph of modeled system
responding to an unprofiled system:

Figure 2: The drivetrain responding to an unprofiled goal

It responds well, but not ideally. In addition, instead of ramping up at
the maximum acceleration of the drivetrain, it gives full voltage to the motors,
which draws a lot of current and creates brownouts on an actual system.

2



2.2 Trapezoidal Motion Profiling

To solve these problems, you can profile the goal, accounting for the maximum
accelerations and velocities of the drivetrain or other system you are modelling.
Profiling the goal also allows you to have a lot of feed-forwards control, not
relying as heavily on sensors and other inputs to the system. Deriving the
trapezoidal motion profile goes like this. You have two constraints: amax and
vmax. When you are given a goal distance dgoal, the distance under the velocity

profile must equal this distance, or
∫ ttotal

0
(v)dt = dgoal.

1 Instead of contemplat-
ing this integral however, we can break down the trapezoid into multiple parts;
the acceleration, cruising, and deceleration.

We need to find first the times it takes to accelerate and decelerate, and
identify the distance that we travel in that time. Since you know the slope of
the line amax, and you know the starting point, some vs, and the maximum
velocity vmax, you can figure out the time travelled by considering the time
ta ∗ amax to be equal to the difference between vs and vmax. You can do the
same for the deceleration time, but with an ending velocity ve instead.

1Don’t get worried, because although calculus can indeed be used as a way to determine
the constraints of the profile more intuitively and easily, you can also use simple geometry
and kinematic equations.

3



ta =
vmax − vs

amax

td =
vmax − ve

amax

Notice we are not assuming vs or ve to be zero - this gives us greater flexi-
bility in generating profiles. For example, if we were already moving forwards
while going into the profile, you don’t want to miscalculate the time to accel-
erate because you are already moving at a velocity. Similarly, if you have a
target ending velocity, subtracting ve accommodates for this. With ta and td
calculated, you can now calculate the distance travelled while accelerating and
decelerating, which only leaves you with tc to calculate to reach the desired
distance.

The distance travelled during acceleration is equal to the average velocity of
that section times the time that it travels.

da = ta
vs + vmax

2

This can be simplified by substituting the times for their respective equa-
tions.

da = (
vmax − vs

amax
)(
vs + vmax

2
)

da =
v2max − v2s

2amax

The sum of each part’s distance should be equal to the total distance.

dgoal = da + dc + dd

Having calculated da and dd, you can substitute this into the equation. Using
basic kinematic equations you can also determine dc = tcvmax, and substitute
that as well.

dgoal =
v2max − v2s

2amax
+

v2max − v2e
2amax

+ tcvmax

Solving for tc, our unknown value which is the only thing preventing us from
knowing the trapezoidal profile’s constraints.

tc =
dgoal − v2

max−v2
s

2amax
+

v2
max−v2

e

2amax

vmax

This equation is what finally allows us to determine the profile’s length and
shape. You can also see that the only three values needed to calculate this
cruising time is the maximum velocity, maximum acceleration, and the desired
distance. With this calculation, you can then write code which calculates the
time for each portion of the profile, then sets a goal based on where it is in the
profile and how much time has elapsed.

4



However, there is one problem with this. If the target distance dgoal is
less than the distance it takes to accelerate and decelerate from your starting
velocity vs and ending velocity ve, then instead of making a trapezoidal motion
profile, you will have to make a triangular motion profile. This math is slightly
different, because you now have a lower maximum velocity than the physical
vmax constraint on the drivetrain or system.

Without a cruising section, you must now calculate the new maximum veloc-
ity to be able to calculate the time for acceleration and deceleration. Assuming
again to have non-zero starting and ending velocities, the acceleration times are
ta = vmax−vs

amax
and td = vmax−ve

amax
. In addition, the equation resulting in dgoal still

holds.

dgoal =
vmax + vs

2
ta +

vmax + ve
2

td

However, since we no longer know vmax, we’ll need to substitute the times
and solve for it.

dgoal = (
vmax + vs

2
)(
vmax − vs

amax
) + (

vmax + ve
2

)(
vmax − ve

amax
)

dgoal =
(vmax + vs)(vmax − vs)

2amax
+

(vmax + ve)(vmax − ve)

2amax

dgoal =
v2max − v2s

2amax
+

v2max + v2e
2amax

5



2amaxdgoal = 2v2max − v2s − v2e

2amaxdgoal + v2s + v2e
2

= v2max

vmax =

√
2amaxdgoal + v2s + v2e

2

This new maximum velocity can then be plugged into the two equations for
time to acquire the constraints on time for the profile, and again you are able
to calculate the velocity at any given point by following these constraints.

6


